S5 2007+777的射电性质研究*

李振旭1 吴忠祖1† 陈永军2 陈亮2 颜敏峰2 米立功3
(1 贵州大学物理学院 贵阳 550025)
(2 中国科学院上海天文台 上海 200030)
(3 黔南民族师范学院物理与电子科学学院 都匀 558000)

摘要 S5 2007+777是一个典型的低峰值频率的蝎虎天体, 该天体具有kpc尺度的X射线喷流, 文献中利用模型估算的方法, 得出X射线波段的多普勒因子达到13.0, 从而喷流尺度可以达到Mpc量级。在此, 收集了有关S5 2007+777的欧洲甚长基线射电干涉网(European VLBI Network, EVN)高分辨率档案数据、美国甚长基线射电干涉网(Very Long Baseline Array, VLBA) 15 GHz观测数据等, 研究了喷流的射电结构、亮度、自行等方面的性质, 发现该源的甚长基线干涉测量(Very Long Baseline Interferometry, VLBI)不同波段的喷流方向一致, 但与文献中给出的kpc尺度的X射线喷流和甚大阵(Very Large Array, VLA)射电喷流方向存在一定的差异, 说明该源的喷流辐射存在多普勒增亮效应。由VLBI观测得到的亮度, 估算了该源的射电多普勒因子的平均值及中值均为5.0, 此值小于文献中X射线波段的多普勒因子, 但与文献中利用其他方法得到的射电波段多普勒因子是一致的; 另外, 对多历元观测数据的拟合发现此源相同波段的各个成分在长历元上没有明显的自行, 短历元上的自行甚至是视超光速运动。这可能是由低表面亮度成分中心位置的转移造成的。这同时也验证了之前估算的射电多普勒因子不是很大。小X射线波段多普勒因子的结论, 利用所得到的射电多普勒因子, 发现该源具有较大尺度的本征射电喷流, 可达到0.5 Mpc, 由此源被使用的是均值, 因此说明该源也有可能具有接近巨大射电星系尺度的喷流。

关键词 蝎虎天体: 个别; S5 2007+777, 星系: 喷流, X射线: 星系
中图分类号: P164; 文献标识码: A

1 引言

S5 2007+777是一个典型的蝎虎(BL Lac)天体[1], 其弱OII和OIII发射线显示其红移z = 0.342[2]。同时, 该源既是一个低峰值频率的天体[3], 又是一个典型的日内光变源[4]。费米γ射线太空望远镜上的大天区望远镜(Large Area Telescope, LAT)观测

* 国家自然科学基金项目(11763002, U1431111)及贵州省科技计划项目(黔科合平台人才[2017]5788号)资助
† zzwu08@gmail.com

甚长基线干涉仪（VLBI）观测显示该天体是一个具有单方向喷流结构的视超光速VLBI射电源[12-13]。在20世纪80年代，该天体喷流的其中一个模型成分以4.7c的速度远离核心[11]。Eckart等[14]发现S5 2007+777的VLBI喷流沿着大约−95°的方向延伸。其喷流的模型成分之一以(0.223 ± 0.015) mas/yr的速度远离核心，与之相对应的视向速度系数β = 5.78 ± 0.38[7]。而Homan等[15]认为该源喷流的模型成分不存在径向运动，虽然有的模型成分似乎存在自行，但更可能是在某个大、低表面亮度成分亮度中心的转移。

在X射线波段，Sambruna等[11]利用逆康普顿/宇宙微波背景（Inverse Compton on the CMB photons, IC/CMB）模型得出这个源的多普勒因子为13.0，对应的视向夹角在4°–5°之间，得到这个源的喷流可以达到Mpc尺度。如果有更大的多普勒因子，该源有可能具有更大尺度的喷流，甚至该源有可能是巨射电星系的候选体[16]，而目前已发现的绝大多数巨射电星系为FR II型射电星系[17]。Wu等[18]利用少量欧洲甚长基线干涉网（European VLBI Network, EVN）档案数据，对S5 2007+777的射电结构，以及该源的光变温度及喷流方向与视线方向的夹角，分析了该源的喷流尺度，这也帮助我们更好地理解了该源的射电性质。本文的结构如下：在论文第2部分，简要介绍了本文使用的数据及模型预测结果；第3–5部分分别给出了文章的结果、讨论和总结。在本文中，使用的宇宙学参数为：H₀ = 73 km·s⁻¹·Mpc⁻¹, Ωₘ = 0.27, Ωₐ = 0.73; 其中H₀为哈勃常数，Ωₘ为物质密度参数，Ωₐ为暗能量密度参数。
2 观测数据和数据处理

在这篇文章中，我们搜集了S5 2007+777的EVN档案数据以及VLBA 15 GHz巡天观测数据。在表1与表2中列出了每个数据的观测历元、频率ν、项目代码，这些数据都是自校准过的，然后把这些数据单个导入DIFMAP (Difference Mapping)程序软件[19−20]进行成图分量处理。通过以上工作，得出了S5 2007+777的喷流结构及其性质，数据拟合结果在表3、表4中给出，其中S为总流量密度、r是模型成分离核心的距离、ϕ是模型成分的方位角、θd是模型成分的角直径、Tb是射电亮温度。其中模型成分参数的误差由Lobanov所给公式算出。1

<table>
<thead>
<tr>
<th>Epoch</th>
<th>ν/GHz</th>
<th>EVN Project Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-05-30</td>
<td>5.0</td>
<td>GM049A</td>
</tr>
<tr>
<td>2003-06-04</td>
<td>5.0</td>
<td>GJ010A</td>
</tr>
<tr>
<td>2006-06-16</td>
<td>5.0</td>
<td>EP055</td>
</tr>
<tr>
<td>2014-06-11</td>
<td>5.0</td>
<td>EL051B</td>
</tr>
<tr>
<td>2015-03-11</td>
<td>5.0</td>
<td>EC047B</td>
</tr>
<tr>
<td>2016-03-16</td>
<td>5.0</td>
<td>EG082H</td>
</tr>
<tr>
<td>2007-03-21</td>
<td>6.6</td>
<td>EM064C</td>
</tr>
<tr>
<td>2009-03-11</td>
<td>6.6</td>
<td>EM064D</td>
</tr>
<tr>
<td>2011-10-27</td>
<td>6.6</td>
<td>N11M3</td>
</tr>
<tr>
<td>2004-02-17</td>
<td>1.6</td>
<td>EB026</td>
</tr>
<tr>
<td>2005-10-30</td>
<td>1.6</td>
<td>EK022B</td>
</tr>
<tr>
<td>2007-03-11</td>
<td>1.6</td>
<td>EK024C</td>
</tr>
<tr>
<td>2009-11-05</td>
<td>1.6</td>
<td>NO913</td>
</tr>
<tr>
<td>2011-02-28</td>
<td>1.6</td>
<td>EM090C</td>
</tr>
<tr>
<td>2012-10-23</td>
<td>1.6</td>
<td>EA051</td>
</tr>
<tr>
<td>2013-03-11</td>
<td>1.6</td>
<td>ET028</td>
</tr>
<tr>
<td>2014-05-29</td>
<td>1.6</td>
<td>EL051A</td>
</tr>
<tr>
<td>2015-02-28</td>
<td>1.6</td>
<td>EC047A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epoch</th>
<th>ν/GHz</th>
<th>VLBA Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-08-31</td>
<td>15.0</td>
<td>BZ004</td>
</tr>
<tr>
<td>1995-12-16</td>
<td>15.0</td>
<td>BK37A</td>
</tr>
<tr>
<td>1996-01-19</td>
<td>15.0</td>
<td>BR034</td>
</tr>
<tr>
<td>1996-03-22</td>
<td>15.0</td>
<td>BR034B</td>
</tr>
<tr>
<td>1996-05-18</td>
<td>15.0</td>
<td>BK037B</td>
</tr>
<tr>
<td>1996-05-27</td>
<td>15.0</td>
<td>BR034C</td>
</tr>
<tr>
<td>1996-07-27</td>
<td>15.0</td>
<td>BR034D</td>
</tr>
<tr>
<td>1996-09-27</td>
<td>15.0</td>
<td>BR034E</td>
</tr>
<tr>
<td>1996-12-06</td>
<td>15.0</td>
<td>BR034F</td>
</tr>
<tr>
<td>1997-02-10</td>
<td>15.0</td>
<td>BG063</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>BG064</td>
</tr>
<tr>
<td>1998-03-08</td>
<td>15.0</td>
<td>BK052B</td>
</tr>
<tr>
<td>1999-01-02</td>
<td>15.0</td>
<td>BG077D</td>
</tr>
<tr>
<td>1999-05-16</td>
<td>15.0</td>
<td>BR057B</td>
</tr>
<tr>
<td>1999-07-27</td>
<td>15.0</td>
<td>BM114B</td>
</tr>
<tr>
<td>2000-05-10</td>
<td>15.0</td>
<td>BD064B</td>
</tr>
<tr>
<td>2000-06-15</td>
<td>15.0</td>
<td>BM123</td>
</tr>
<tr>
<td>2001-02-28</td>
<td>15.0</td>
<td>BS089</td>
</tr>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>BR072A</td>
</tr>
<tr>
<td>2001-10-14</td>
<td>15.0</td>
<td>BR072B</td>
</tr>
<tr>
<td>2002-08-24</td>
<td>15.0</td>
<td>BG121E</td>
</tr>
<tr>
<td>2004-04-12</td>
<td>15.0</td>
<td>BG144</td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>BG167</td>
</tr>
<tr>
<td>2010-10-15</td>
<td>15.0</td>
<td>BL149CS</td>
</tr>
<tr>
<td>2011-03-05</td>
<td>15.0</td>
<td>BL149DD</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>15.0</td>
<td>BL149DP</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>BL178AL</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>BL178BB</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>BL229AL</td>
</tr>
</tbody>
</table>
表3 EVN数据模型成分参数

<table>
<thead>
<tr>
<th>Epoch</th>
<th>ν/GHz</th>
<th>S/Jy</th>
<th>r/mas</th>
<th>ϕ/°</th>
<th>θd/mas</th>
<th>lg(Tb/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-05-30</td>
<td>5.0</td>
<td>0.701 ± 0.086</td>
<td>0.000</td>
<td>0.000</td>
<td>0.524 ± 0.047</td>
<td>11.359</td>
</tr>
<tr>
<td>2003-05-30</td>
<td>5.0</td>
<td>0.295 ± 0.070</td>
<td>1.186 ± 0.124</td>
<td>-93.717</td>
<td>1.109 ± 0.247</td>
<td>-</td>
</tr>
<tr>
<td>2003-05-30</td>
<td>5.0</td>
<td>0.040 ± 0.025</td>
<td>6.507 ± 0.357</td>
<td>-93.297</td>
<td>1.318 ± 0.713</td>
<td>-</td>
</tr>
<tr>
<td>2003-06-04</td>
<td>5.0</td>
<td>0.747 ± 0.041</td>
<td>0.000</td>
<td>0.000</td>
<td>0.692 ± 0.021</td>
<td>12.052</td>
</tr>
<tr>
<td>2003-06-04</td>
<td>5.0</td>
<td>0.255 ± 0.029</td>
<td>1.221 ± 0.021</td>
<td>-92.020</td>
<td>0.408 ± 0.041</td>
<td>-</td>
</tr>
<tr>
<td>2003-06-04</td>
<td>5.0</td>
<td>0.034 ± 0.011</td>
<td>6.123 ± 0.200</td>
<td>-94.093</td>
<td>1.452 ± 0.401</td>
<td>-</td>
</tr>
<tr>
<td>2006-06-16</td>
<td>5.0</td>
<td>0.742 ± 0.049</td>
<td>0.000</td>
<td>0.000</td>
<td>0.481 ± 0.023</td>
<td>11.463</td>
</tr>
<tr>
<td>2006-06-16</td>
<td>5.0</td>
<td>0.226 ± 0.028</td>
<td>1.445 ± 0.010</td>
<td>-90.478</td>
<td>0.182 ± 0.019</td>
<td>-</td>
</tr>
<tr>
<td>2006-06-16</td>
<td>5.0</td>
<td>0.067 ± 0.015</td>
<td>6.423 ± 0.086</td>
<td>-91.952</td>
<td>0.984 ± 0.171</td>
<td>-</td>
</tr>
<tr>
<td>2014-06-11</td>
<td>5.0</td>
<td>0.370 ± 0.028</td>
<td>0.000</td>
<td>0.000</td>
<td>0.416 ± 0.022</td>
<td>11.278</td>
</tr>
<tr>
<td>2014-06-11</td>
<td>5.0</td>
<td>0.187 ± 0.026</td>
<td>1.039 ± 0.035</td>
<td>-82.212</td>
<td>0.532 ± 0.071</td>
<td>-</td>
</tr>
<tr>
<td>2014-06-11</td>
<td>5.0</td>
<td>0.071 ± 0.015</td>
<td>5.586 ± 0.266</td>
<td>-90.241</td>
<td>2.775 ± 0.533</td>
<td>-</td>
</tr>
<tr>
<td>2015-03-11</td>
<td>5.0</td>
<td>0.487 ± 0.039</td>
<td>0.000</td>
<td>0.000</td>
<td>0.724 ± 0.045</td>
<td>10.908</td>
</tr>
<tr>
<td>2015-03-11</td>
<td>5.0</td>
<td>0.104 ± 0.023</td>
<td>1.070 ± 0.040</td>
<td>-93.694</td>
<td>0.385 ± 0.081</td>
<td>-</td>
</tr>
<tr>
<td>2015-03-11</td>
<td>5.0</td>
<td>0.063 ± 0.015</td>
<td>6.188 ± 0.101</td>
<td>-91.572</td>
<td>1.042 ± 0.201</td>
<td>-</td>
</tr>
<tr>
<td>2016-03-16</td>
<td>5.0</td>
<td>0.505 ± 0.045</td>
<td>0.000</td>
<td>0.000</td>
<td>1.032 ± 0.056</td>
<td>10.698</td>
</tr>
<tr>
<td>2016-03-16</td>
<td>5.0</td>
<td>0.054 ± 0.014</td>
<td>4.785 ± 0.206</td>
<td>-92.819</td>
<td>2.208 ± 0.411</td>
<td>-</td>
</tr>
<tr>
<td>2007-03-21</td>
<td>6.6</td>
<td>1.434 ± 0.081</td>
<td>0.000</td>
<td>0.000</td>
<td>1.126 ± 0.045</td>
<td>10.758</td>
</tr>
<tr>
<td>2007-03-21</td>
<td>6.6</td>
<td>0.093 ± 0.025</td>
<td>3.859 ± 0.333</td>
<td>-90.292</td>
<td>2.689 ± 0.665</td>
<td>-</td>
</tr>
<tr>
<td>2009-03-11</td>
<td>6.6</td>
<td>1.142 ± 0.062</td>
<td>0.000</td>
<td>0.000</td>
<td>0.721 ± 0.028</td>
<td>11.050</td>
</tr>
<tr>
<td>2009-03-11</td>
<td>6.6</td>
<td>0.117 ± 0.022</td>
<td>5.143 ± 0.184</td>
<td>-91.633</td>
<td>2.249 ± 0.367</td>
<td>-</td>
</tr>
<tr>
<td>2011-10-27</td>
<td>6.6</td>
<td>0.521 ± 0.050</td>
<td>0.000</td>
<td>0.000</td>
<td>0.696 ± 0.048</td>
<td>10.737</td>
</tr>
<tr>
<td>2011-10-27</td>
<td>6.6</td>
<td>0.047 ± 0.016</td>
<td>6.325 ± 0.409</td>
<td>-93.147</td>
<td>2.935 ± 0.819</td>
<td>-</td>
</tr>
<tr>
<td>2004-02-17</td>
<td>1.6</td>
<td>0.986 ± 0.097</td>
<td>0.000</td>
<td>0.000</td>
<td>5.032 ± 0.360</td>
<td>10.702</td>
</tr>
<tr>
<td>2005-10-30</td>
<td>1.6</td>
<td>1.206 ± 0.066</td>
<td>0.000</td>
<td>0.000</td>
<td>1.828 ± 0.077</td>
<td>11.503</td>
</tr>
<tr>
<td>2007-03-11</td>
<td>1.6</td>
<td>0.901 ± 0.069</td>
<td>0.000</td>
<td>0.000</td>
<td>2.303 ± 0.134</td>
<td>11.169</td>
</tr>
<tr>
<td>2009-11-05</td>
<td>1.6</td>
<td>0.033 ± 0.032</td>
<td>0.000</td>
<td>0.000</td>
<td>1.625 ± 0.043</td>
<td>11.483</td>
</tr>
<tr>
<td>2011-02-28</td>
<td>1.6</td>
<td>0.705 ± 0.056</td>
<td>0.000</td>
<td>0.000</td>
<td>1.435 ± 0.056</td>
<td>11.472</td>
</tr>
<tr>
<td>2012-10-23</td>
<td>1.6</td>
<td>0.501 ± 0.027</td>
<td>0.000</td>
<td>0.000</td>
<td>0.749 ± 0.029</td>
<td>11.887</td>
</tr>
<tr>
<td>2013-03-11</td>
<td>1.6</td>
<td>0.486 ± 0.024</td>
<td>0.000</td>
<td>0.000</td>
<td>1.001 ± 0.036</td>
<td>11.628</td>
</tr>
<tr>
<td>2014-05-29</td>
<td>1.6</td>
<td>0.712 ± 0.036</td>
<td>0.000</td>
<td>0.000</td>
<td>1.940 ± 0.070</td>
<td>11.219</td>
</tr>
<tr>
<td>2015-02-28</td>
<td>1.6</td>
<td>0.464 ± 0.062</td>
<td>0.000</td>
<td>0.000</td>
<td>2.488 ± 0.258</td>
<td>10.807</td>
</tr>
<tr>
<td>Epoch</td>
<td>ν/GHz</td>
<td>S/Jy</td>
<td>r/mas</td>
<td>ϕ/°</td>
<td>θ_d/mas</td>
<td>$\lg(T_b/K)$</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1994-08-31</td>
<td>15.0</td>
<td>0.790 ± 0.015</td>
<td>0.000</td>
<td>0.000</td>
<td>0.127 ± 0.002</td>
<td>11.888</td>
</tr>
<tr>
<td>1994-08-31</td>
<td>15.0</td>
<td>0.375 ± 0.012</td>
<td>0.504 ± 0.003</td>
<td>-88.142</td>
<td>0.193 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>1994-08-31</td>
<td>15.0</td>
<td>0.157 ± 0.007</td>
<td>1.533 ± 0.007</td>
<td>-96.616</td>
<td>0.379 ± 0.014</td>
<td></td>
</tr>
<tr>
<td>1995-12-16</td>
<td>15.0</td>
<td>0.638 ± 0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.223 ± 0.008</td>
<td>11.298</td>
</tr>
<tr>
<td>1995-12-16</td>
<td>15.0</td>
<td>0.265 ± 0.028</td>
<td>0.499 ± 0.019</td>
<td>-94.725</td>
<td>0.370 ± 0.037</td>
<td></td>
</tr>
<tr>
<td>1995-12-16</td>
<td>15.0</td>
<td>0.145 ± 0.015</td>
<td>1.639 ± 0.019</td>
<td>-91.123</td>
<td>0.495 ± 0.039</td>
<td></td>
</tr>
<tr>
<td>1996-01-19</td>
<td>15.0</td>
<td>0.709 ± 0.035</td>
<td>0.000</td>
<td>0.000</td>
<td>0.229 ± 0.008</td>
<td>11.728</td>
</tr>
<tr>
<td>1996-01-19</td>
<td>15.0</td>
<td>0.234 ± 0.030</td>
<td>0.511 ± 0.015</td>
<td>-92.631</td>
<td>0.234 ± 0.029</td>
<td></td>
</tr>
<tr>
<td>1996-01-19</td>
<td>15.0</td>
<td>0.028 ± 0.007</td>
<td>0.891 ± 0.042</td>
<td>-102.88</td>
<td>0.400 ± 0.084</td>
<td></td>
</tr>
<tr>
<td>1996-01-19</td>
<td>15.0</td>
<td>0.136 ± 0.015</td>
<td>1.630 ± 0.024</td>
<td>-91.390</td>
<td>0.532 ± 0.047</td>
<td></td>
</tr>
<tr>
<td>1996-01-19</td>
<td>15.0</td>
<td>0.016 ± 0.006</td>
<td>2.180 ± 0.012</td>
<td>-98.323</td>
<td>0.062 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>1996-03-22</td>
<td>15.0</td>
<td>0.596 ± 0.029</td>
<td>0.000</td>
<td>0.000</td>
<td>0.243 ± 0.009</td>
<td>11.181</td>
</tr>
<tr>
<td>1996-03-22</td>
<td>15.0</td>
<td>0.234 ± 0.023</td>
<td>0.515 ± 0.016</td>
<td>-93.522</td>
<td>0.339 ± 0.031</td>
<td></td>
</tr>
<tr>
<td>1996-03-22</td>
<td>15.0</td>
<td>0.128 ± 0.013</td>
<td>1.643 ± 0.019</td>
<td>-91.650</td>
<td>0.480 ± 0.038</td>
<td></td>
</tr>
<tr>
<td>1996-05-18</td>
<td>15.0</td>
<td>0.589 ± 0.026</td>
<td>0.000</td>
<td>0.000</td>
<td>0.260 ± 0.008</td>
<td>11.095</td>
</tr>
<tr>
<td>1996-05-18</td>
<td>15.0</td>
<td>0.216 ± 0.016</td>
<td>0.530 ± 0.011</td>
<td>-90.636</td>
<td>0.346 ± 0.021</td>
<td></td>
</tr>
<tr>
<td>1996-05-18</td>
<td>15.0</td>
<td>0.113 ± 0.012</td>
<td>1.634 ± 0.023</td>
<td>-91.578</td>
<td>0.513 ± 0.046</td>
<td></td>
</tr>
<tr>
<td>1996-05-27</td>
<td>15.0</td>
<td>0.530 ± 0.028</td>
<td>0.000</td>
<td>0.000</td>
<td>0.189 ± 0.007</td>
<td>11.354</td>
</tr>
<tr>
<td>1996-05-27</td>
<td>15.0</td>
<td>0.215 ± 0.019</td>
<td>0.524 ± 0.012</td>
<td>-93.300</td>
<td>0.304 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>1996-05-27</td>
<td>15.0</td>
<td>0.115 ± 0.014</td>
<td>1.647 ± 0.031</td>
<td>-92.949</td>
<td>0.585 ± 0.063</td>
<td></td>
</tr>
<tr>
<td>1996-07-27</td>
<td>15.0</td>
<td>0.541 ± 0.027</td>
<td>0.000</td>
<td>0.000</td>
<td>0.256 ± 0.009</td>
<td>11.522</td>
</tr>
<tr>
<td>1996-07-27</td>
<td>15.0</td>
<td>0.183 ± 0.017</td>
<td>0.530 ± 0.012</td>
<td>-95.137</td>
<td>0.285 ± 0.024</td>
<td></td>
</tr>
<tr>
<td>1996-07-27</td>
<td>15.0</td>
<td>0.099 ± 0.013</td>
<td>1.625 ± 0.034</td>
<td>-95.228</td>
<td>0.597 ± 0.067</td>
<td></td>
</tr>
<tr>
<td>1996-09-27</td>
<td>15.0</td>
<td>0.597 ± 0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.156 ± 0.005</td>
<td>11.535</td>
</tr>
<tr>
<td>1996-09-27</td>
<td>15.0</td>
<td>0.203 ± 0.019</td>
<td>0.503 ± 0.014</td>
<td>-93.316</td>
<td>0.335 ± 0.027</td>
<td></td>
</tr>
<tr>
<td>1996-09-27</td>
<td>15.0</td>
<td>0.094 ± 0.013</td>
<td>1.621 ± 0.025</td>
<td>-96.662</td>
<td>0.435 ± 0.050</td>
<td></td>
</tr>
<tr>
<td>1996-12-06</td>
<td>15.0</td>
<td>0.732 ± 0.037</td>
<td>0.000</td>
<td>0.000</td>
<td>0.211 ± 0.008</td>
<td>11.323</td>
</tr>
<tr>
<td>1996-12-06</td>
<td>15.0</td>
<td>0.199 ± 0.020</td>
<td>0.503 ± 0.014</td>
<td>-92.610</td>
<td>0.324 ± 0.028</td>
<td></td>
</tr>
<tr>
<td>1996-12-06</td>
<td>15.0</td>
<td>0.074 ± 0.013</td>
<td>1.644 ± 0.036</td>
<td>-96.112</td>
<td>0.488 ± 0.072</td>
<td></td>
</tr>
<tr>
<td>1997-02-10</td>
<td>15.0</td>
<td>0.847 ± 0.032</td>
<td>0.000</td>
<td>0.000</td>
<td>0.338 ± 0.009</td>
<td>11.713</td>
</tr>
<tr>
<td>1997-02-10</td>
<td>15.0</td>
<td>0.188 ± 0.018</td>
<td>0.537 ± 0.010</td>
<td>-97.506</td>
<td>0.222 ± 0.020</td>
<td></td>
</tr>
<tr>
<td>1997-02-10</td>
<td>15.0</td>
<td>0.061 ± 0.009</td>
<td>1.689 ± 0.028</td>
<td>-96.012</td>
<td>0.447 ± 0.055</td>
<td></td>
</tr>
<tr>
<td>Epoch</td>
<td>(\nu/\text{GHz})</td>
<td>(S/\text{Jy})</td>
<td>(r/\text{mas})</td>
<td>(\phi/\degree)</td>
<td>(\theta_0/\text{mas})</td>
<td>(\log(T_b/\text{K}))</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.755 ± 0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.303 ± 0.008</td>
<td>11.053</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.281 ± 0.029</td>
<td>0.486 ± 0.010</td>
<td>-85.368</td>
<td>0.191 ± 0.019</td>
<td>-</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.020 ± 0.006</td>
<td>0.821 ± 0.000</td>
<td>-96.461</td>
<td>0.000 ± 0.000</td>
<td>-</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.004 ± 0.003</td>
<td>1.297 ± 0.000</td>
<td>-97.004</td>
<td>0.000 ± 0.000</td>
<td>-</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.045 ± 0.007</td>
<td>1.852 ± 0.030</td>
<td>-96.237</td>
<td>0.456 ± 0.061</td>
<td>-</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.003 ± 0.002</td>
<td>4.016 ± 0.173</td>
<td>-97.550</td>
<td>0.803 ± 0.346</td>
<td>-</td>
</tr>
<tr>
<td>1997-06-01</td>
<td>15.0</td>
<td>0.003 ± 0.002</td>
<td>6.445 ± 0.227</td>
<td>-92.151</td>
<td>0.928 ± 0.454</td>
<td>-</td>
</tr>
<tr>
<td>1998-03-08</td>
<td>15.0</td>
<td>0.667 ± 0.026</td>
<td>0.000</td>
<td>0.000</td>
<td>0.268 ± 0.010</td>
<td>11.141</td>
</tr>
<tr>
<td>1998-03-08</td>
<td>15.0</td>
<td>0.207 ± 0.018</td>
<td>0.532 ± 0.013</td>
<td>-78.528</td>
<td>0.313 ± 0.026</td>
<td>-</td>
</tr>
<tr>
<td>1998-03-08</td>
<td>15.0</td>
<td>0.083 ± 0.010</td>
<td>1.571 ± 0.028</td>
<td>-101.73</td>
<td>0.518 ± 0.055</td>
<td>-</td>
</tr>
<tr>
<td>1999-01-02</td>
<td>15.0</td>
<td>0.552 ± 0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.200 ± 0.007</td>
<td>11.405</td>
</tr>
<tr>
<td>1999-01-02</td>
<td>15.0</td>
<td>0.444 ± 0.037</td>
<td>0.561 ± 0.008</td>
<td>-87.892</td>
<td>0.195 ± 0.016</td>
<td>-</td>
</tr>
<tr>
<td>1999-01-02</td>
<td>15.0</td>
<td>0.084 ± 0.013</td>
<td>1.582 ± 0.035</td>
<td>-85.330</td>
<td>0.517 ± 0.069</td>
<td>-</td>
</tr>
<tr>
<td>1999-05-16</td>
<td>15.0</td>
<td>0.611 ± 0.025</td>
<td>0.000</td>
<td>0.000</td>
<td>0.314 ± 0.009</td>
<td>11.635</td>
</tr>
<tr>
<td>1999-05-16</td>
<td>15.0</td>
<td>0.242 ± 0.016</td>
<td>0.601 ± 0.005</td>
<td>-87.885</td>
<td>0.193 ± 0.009</td>
<td>-</td>
</tr>
<tr>
<td>1999-05-16</td>
<td>15.0</td>
<td>0.082 ± 0.010</td>
<td>1.554 ± 0.018</td>
<td>-86.26</td>
<td>0.369 ± 0.035</td>
<td>-</td>
</tr>
<tr>
<td>1999-05-16</td>
<td>15.0</td>
<td>0.024 ± 0.006</td>
<td>6.652 ± 0.169</td>
<td>-93.883</td>
<td>1.401 ± 0.339</td>
<td>-</td>
</tr>
<tr>
<td>1999-07-27</td>
<td>15.0</td>
<td>0.567 ± 0.022</td>
<td>0.000</td>
<td>0.000</td>
<td>0.427 ± 0.012</td>
<td>11.442</td>
</tr>
<tr>
<td>1999-07-27</td>
<td>15.0</td>
<td>0.181 ± 0.025</td>
<td>0.537 ± 0.016</td>
<td>-86.208</td>
<td>0.239 ± 0.032</td>
<td>-</td>
</tr>
<tr>
<td>1999-07-27</td>
<td>15.0</td>
<td>0.074 ± 0.083</td>
<td>1.483 ± 0.297</td>
<td>-87.156</td>
<td>0.529 ± 0.594</td>
<td>-</td>
</tr>
<tr>
<td>1999-07-27</td>
<td>15.0</td>
<td>0.020 ± 0.005</td>
<td>6.729 ± 0.138</td>
<td>-94.518</td>
<td>1.275 ± 0.277</td>
<td>-</td>
</tr>
<tr>
<td>2000-05-10</td>
<td>15.0</td>
<td>0.738 ± 0.032</td>
<td>0.000</td>
<td>0.000</td>
<td>0.272 ± 0.008</td>
<td>11.172</td>
</tr>
<tr>
<td>2000-05-10</td>
<td>15.0</td>
<td>0.292 ± 0.020</td>
<td>0.508 ± 0.004</td>
<td>-85.210</td>
<td>0.144 ± 0.007</td>
<td>-</td>
</tr>
<tr>
<td>2000-05-10</td>
<td>15.0</td>
<td>0.061 ± 0.021</td>
<td>1.395 ± 0.089</td>
<td>-87.581</td>
<td>0.521 ± 0.178</td>
<td>-</td>
</tr>
<tr>
<td>2000-05-10</td>
<td>15.0</td>
<td>0.066 ± 0.010</td>
<td>1.822 ± 0.014</td>
<td>-89.977</td>
<td>0.323 ± 0.029</td>
<td>-</td>
</tr>
<tr>
<td>2000-05-10</td>
<td>15.0</td>
<td>0.016 ± 0.006</td>
<td>6.724 ± 0.199</td>
<td>-93.448</td>
<td>1.289 ± 0.399</td>
<td>-</td>
</tr>
<tr>
<td>2000-06-15</td>
<td>15.0</td>
<td>0.896 ± 0.031</td>
<td>0.000</td>
<td>0.000</td>
<td>0.320 ± 0.008</td>
<td>11.904</td>
</tr>
<tr>
<td>2000-06-15</td>
<td>15.0</td>
<td>0.297 ± 0.019</td>
<td>0.530 ± 0.004</td>
<td>-84.841</td>
<td>0.141 ± 0.008</td>
<td>-</td>
</tr>
<tr>
<td>2000-06-15</td>
<td>15.0</td>
<td>0.072 ± 0.009</td>
<td>1.509 ± 0.014</td>
<td>-88.881</td>
<td>0.356 ± 0.028</td>
<td>-</td>
</tr>
<tr>
<td>2000-06-15</td>
<td>15.0</td>
<td>0.037 ± 0.013</td>
<td>1.875 ± 0.060</td>
<td>0.90133</td>
<td>0.340 ± 0.119</td>
<td>-</td>
</tr>
<tr>
<td>2000-06-15</td>
<td>15.0</td>
<td>0.007 ± 0.003</td>
<td>6.929 ± 0.093</td>
<td>-92.977</td>
<td>0.615 ± 0.186</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4 Continued

<table>
<thead>
<tr>
<th>Epoch</th>
<th>ν/GHz</th>
<th>S/Jy</th>
<th>r/mas</th>
<th>ϕ/°</th>
<th>θ_{α}/mas</th>
<th>$\log(T_{\nu}/K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>0.528 ± 0.024</td>
<td>0.000</td>
<td>0.000</td>
<td>0.172 ± 0.007</td>
<td>11.465</td>
</tr>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>0.201 ± 0.017</td>
<td>0.606 ± 0.006</td>
<td>0.000</td>
<td>0.246 ± 0.007</td>
<td>11.150</td>
</tr>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>0.056 ± 0.010</td>
<td>1.234 ± 0.012</td>
<td>0.000</td>
<td>0.190 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>0.169 ± 0.014</td>
<td>1.649 ± 0.010</td>
<td>0.000</td>
<td>0.364 ± 0.020</td>
<td></td>
</tr>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>0.017 ± 0.005</td>
<td>1.920 ± 0.014</td>
<td>0.000</td>
<td>0.098 ± 0.027</td>
<td></td>
</tr>
<tr>
<td>2001-05-05</td>
<td>15.0</td>
<td>0.026 ± 0.006</td>
<td>6.256 ± 0.350</td>
<td>0.000</td>
<td>2.273 ± 0.700</td>
<td></td>
</tr>
<tr>
<td>2001-10-14</td>
<td>15.0</td>
<td>0.580 ± 0.024</td>
<td>0.000</td>
<td>0.000</td>
<td>0.275 ± 0.008</td>
<td>11.089</td>
</tr>
<tr>
<td>2001-10-14</td>
<td>15.0</td>
<td>0.179 ± 0.018</td>
<td>0.582 ± 0.010</td>
<td>0.000</td>
<td>0.195 ± 0.019</td>
<td></td>
</tr>
<tr>
<td>2001-10-14</td>
<td>15.0</td>
<td>0.200 ± 0.014</td>
<td>1.649 ± 0.010</td>
<td>0.000</td>
<td>0.364 ± 0.020</td>
<td></td>
</tr>
<tr>
<td>2001-10-14</td>
<td>15.0</td>
<td>0.017 ± 0.005</td>
<td>1.920 ± 0.014</td>
<td>0.000</td>
<td>0.098 ± 0.027</td>
<td></td>
</tr>
<tr>
<td>2001-10-14</td>
<td>15.0</td>
<td>0.015 ± 0.005</td>
<td>6.831 ± 0.262</td>
<td>0.000</td>
<td>1.700 ± 0.524</td>
<td></td>
</tr>
<tr>
<td>2002-08-24</td>
<td>15.0</td>
<td>0.557 ± 0.025</td>
<td>0.000</td>
<td>0.000</td>
<td>0.260 ± 0.008</td>
<td>11.104</td>
</tr>
<tr>
<td>2002-08-24</td>
<td>15.0</td>
<td>0.282 ± 0.033</td>
<td>0.613 ± 0.012</td>
<td>0.000</td>
<td>0.199 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>2002-08-24</td>
<td>15.0</td>
<td>0.066 ± 0.009</td>
<td>1.746 ± 0.026</td>
<td>0.000</td>
<td>0.504 ± 0.053</td>
<td></td>
</tr>
<tr>
<td>2002-08-24</td>
<td>15.0</td>
<td>0.011 ± 0.004</td>
<td>6.508 ± 0.166</td>
<td>0.000</td>
<td>0.985 ± 0.332</td>
<td></td>
</tr>
<tr>
<td>2004-04-12</td>
<td>15.0</td>
<td>0.842 ± 0.036</td>
<td>0.000</td>
<td>0.000</td>
<td>0.252 ± 0.008</td>
<td>12.344</td>
</tr>
<tr>
<td>2004-04-12</td>
<td>15.0</td>
<td>0.421 ± 0.032</td>
<td>0.661 ± 0.008</td>
<td>0.000</td>
<td>0.212 ± 0.015</td>
<td></td>
</tr>
<tr>
<td>2004-04-12</td>
<td>15.0</td>
<td>0.045 ± 0.009</td>
<td>1.740 ± 0.038</td>
<td>0.000</td>
<td>0.463 ± 0.075</td>
<td></td>
</tr>
<tr>
<td>2004-04-12</td>
<td>15.0</td>
<td>0.006 ± 0.003</td>
<td>6.021 ± 0.000</td>
<td>0.000</td>
<td>0.951 ± 0.000</td>
<td></td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>0.574 ± 0.024</td>
<td>0.000</td>
<td>0.000</td>
<td>0.224 ± 0.006</td>
<td>11.934</td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>0.115 ± 0.016</td>
<td>0.579 ± 0.003</td>
<td>0.000</td>
<td>0.193 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>0.106 ± 0.010</td>
<td>1.594 ± 0.010</td>
<td>0.000</td>
<td>0.308 ± 0.021</td>
<td></td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>0.030 ± 0.013</td>
<td>2.048 ± 0.070</td>
<td>0.000</td>
<td>0.331 ± 0.139</td>
<td></td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>0.007 ± 0.003</td>
<td>2.666 ± 0.000</td>
<td>0.000</td>
<td>0.916 ± 0.000</td>
<td></td>
</tr>
<tr>
<td>2006-07-02</td>
<td>15.0</td>
<td>0.020 ± 0.005</td>
<td>6.807 ± 0.094</td>
<td>0.000</td>
<td>0.841 ± 0.187</td>
<td></td>
</tr>
<tr>
<td>2010-10-15</td>
<td>15.0</td>
<td>0.450 ± 0.017</td>
<td>0.000</td>
<td>0.000</td>
<td>0.273 ± 0.007</td>
<td>12.183</td>
</tr>
<tr>
<td>2010-10-15</td>
<td>15.0</td>
<td>0.142 ± 0.015</td>
<td>0.491 ± 0.008</td>
<td>0.000</td>
<td>0.154 ± 0.016</td>
<td></td>
</tr>
<tr>
<td>2010-10-15</td>
<td>15.0</td>
<td>0.045 ± 0.012</td>
<td>1.240 ± 0.056</td>
<td>0.000</td>
<td>0.439 ± 0.111</td>
<td></td>
</tr>
<tr>
<td>2010-10-15</td>
<td>15.0</td>
<td>0.060 ± 0.006</td>
<td>1.638 ± 0.011</td>
<td>0.000</td>
<td>0.340 ± 0.023</td>
<td></td>
</tr>
<tr>
<td>2010-10-15</td>
<td>15.0</td>
<td>0.042 ± 0.006</td>
<td>6.465 ± 0.093</td>
<td>0.000</td>
<td>1.287 ± 0.185</td>
<td></td>
</tr>
</tbody>
</table>
表4 续

<table>
<thead>
<tr>
<th>Epoch</th>
<th>ν/GHz</th>
<th>S/Jy</th>
<th>r/mas</th>
<th>ϕ/°</th>
<th>θ_d/mas</th>
<th>$\log(T_b/K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-03-05</td>
<td>15.0</td>
<td>0.586 ± 0.020</td>
<td>0.000</td>
<td>0.000</td>
<td>0.307 ± 0.007</td>
<td>11.551</td>
</tr>
<tr>
<td>2011-03-05</td>
<td>15.0</td>
<td>0.081 ± 0.013</td>
<td>0.446 ± 0.018</td>
<td>−90.759</td>
<td>0.226 ± 0.035</td>
<td>−</td>
</tr>
<tr>
<td>2011-03-05</td>
<td>15.0</td>
<td>0.138 ± 0.010</td>
<td>1.587 ± 0.011</td>
<td>−86.128</td>
<td>0.402 ± 0.022</td>
<td>−</td>
</tr>
<tr>
<td>2011-03-05</td>
<td>15.0</td>
<td>0.041 ± 0.006</td>
<td>6.458 ± 0.102</td>
<td>−92.764</td>
<td>1.385 ± 0.203</td>
<td>−</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>15.0</td>
<td>0.593 ± 0.018</td>
<td>0.000</td>
<td>0.000</td>
<td>0.638 ± 0.015</td>
<td>11.263</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>15.0</td>
<td>0.081 ± 0.013</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003 ± 0.001</td>
<td>−</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>15.0</td>
<td>0.080 ± 0.007</td>
<td>1.490 ± 0.016</td>
<td>−85.842</td>
<td>0.453 ± 0.031</td>
<td>−</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>15.0</td>
<td>0.007 ± 0.002</td>
<td>2.066 ± 0.001</td>
<td>−85.257</td>
<td>0.005 ± 0.001</td>
<td>−</td>
</tr>
<tr>
<td>2011-08-26</td>
<td>15.0</td>
<td>0.035 ± 0.005</td>
<td>6.216 ± 0.088</td>
<td>−91.664</td>
<td>1.324 ± 0.177</td>
<td>−</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>0.539 ± 0.056</td>
<td>0.000</td>
<td>0.000</td>
<td>0.329 ± 0.025</td>
<td>11.569</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>0.067 ± 0.032</td>
<td>0.417 ± 0.044</td>
<td>−96.839</td>
<td>0.186 ± 0.088</td>
<td>−</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>0.018 ± 0.024</td>
<td>0.756 ± 0.125</td>
<td>−84.757</td>
<td>0.192 ± 0.251</td>
<td>−</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>0.041 ± 0.016</td>
<td>1.403 ± 0.041</td>
<td>−88.852</td>
<td>0.294 ± 0.082</td>
<td>−</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>0.012 ± 0.015</td>
<td>1.857 ± 0.231</td>
<td>−85.139</td>
<td>0.387 ± 0.463</td>
<td>−</td>
</tr>
<tr>
<td>2012-06-25</td>
<td>15.0</td>
<td>0.036 ± 0.020</td>
<td>6.514 ± 0.306</td>
<td>−92.200</td>
<td>1.146 ± 0.612</td>
<td>−</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.472 ± 0.026</td>
<td>0.000</td>
<td>0.000</td>
<td>0.290 ± 0.010</td>
<td>11.698</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.263 ± 0.102</td>
<td>0.429 ± 0.024</td>
<td>−97.430</td>
<td>0.121 ± 0.047</td>
<td>−</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.002 ± 0.002</td>
<td>0.950 ± 0.000</td>
<td>−103.54</td>
<td>0.000 ± 0.000</td>
<td>−</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.038 ± 0.007</td>
<td>1.373 ± 0.021</td>
<td>−87.566</td>
<td>0.313 ± 0.041</td>
<td>−</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.020 ± 0.010</td>
<td>1.805 ± 0.058</td>
<td>−87.627</td>
<td>0.240 ± 0.116</td>
<td>−</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.031 ± 0.007</td>
<td>6.572 ± 0.110</td>
<td>−92.760</td>
<td>1.051 ± 0.219</td>
<td>−</td>
</tr>
<tr>
<td>2013-03-31</td>
<td>15.0</td>
<td>0.002 ± 0.002</td>
<td>7.510 ± 0.082</td>
<td>−94.944</td>
<td>0.255 ± 0.164</td>
<td>−</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.700 ± 0.025</td>
<td>0.000</td>
<td>0.000</td>
<td>0.277 ± 0.007</td>
<td>12.051</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.129 ± 0.015</td>
<td>0.506 ± 0.011</td>
<td>−94.432</td>
<td>0.194 ± 0.022</td>
<td>−</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.082 ± 0.009</td>
<td>1.419 ± 0.007</td>
<td>−102.79</td>
<td>0.256 ± 0.014</td>
<td>−</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.058 ± 0.012</td>
<td>1.674 ± 0.017</td>
<td>−101.25</td>
<td>0.168 ± 0.035</td>
<td>−</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.067 ± 0.024</td>
<td>1.835 ± 0.075</td>
<td>−92.118</td>
<td>0.424 ± 0.149</td>
<td>−</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.011 ± 0.004</td>
<td>4.054 ± 0.257</td>
<td>−82.460</td>
<td>1.373 ± 0.514</td>
<td>−</td>
</tr>
<tr>
<td>2017-11-18</td>
<td>15.0</td>
<td>0.018 ± 0.004</td>
<td>5.968 ± 0.107</td>
<td>−91.697</td>
<td>0.971 ± 0.214</td>
<td>−</td>
</tr>
</tbody>
</table>

3 结果分析

3.1 喷流的结构

图1-3分别给出了S5 2007+777在5 GHz、6.6 GHz和1.6 GHz的EVN图像，图4-5给出了VLBA 15 GHz观测图像。在这些图中，可以看到这个源具有典型的核喷流结构。
图1中，用C0、C1、C2分别表示各模型成分。在图5中，用U0、U1、U2、U3、U4、U5、U6分别表示喷流的各模型成分。因为图4中的模型成分和图5中的部分模型成分相同，所以就用了相同符号表示。图1是5.0 GHz波段的EVN图像，而图4和图5是15.0 GHz波段的VLBA图像。因此用不同符号分别表示这两个波段的模型成分。由于1.6 GHz波段的分辨率较低，所以仅仅拟合了核区成分。

通过模型拟合，发现同样是VLBA 15 GHz波段观测数据，不同历元拟合成分也不同，如在图4和图5中，S5 2007+777的喷流模型成分分别有3个和7个。在图8中也可以看到，在距离核区约0.5 mas的位置处，大部分历元拟合成分只有1个，而有些历元拟合成分有两个，距离核区1.5 mas的位置处，很多历元拟合成分有两个，而少量历元拟合成分有1个或3个。我们认为这主要是由于其喷流成分不是很致密且比较复杂以
及各历元观测灵敏度不同造成的。在EVT图中(图1)，核区外只有两个成分，分别为距核区1.3 mas左右的C1成分（对应VLBA图中（图5）的U1–U4成分）和距核区6.5 mas左右的C2成分（对应VLBA图中的U5和U6成分）。这也说明喷流的各个成分不是很致密，一个低分辨率成分（EVT图像）在高分辨率（VLBA 15 GHz）情况下可以出现多个成分。

通过分析图1–5，得出在不同波段、不同历元之间，该源的流量以及成分分布有所不同，但是能更好地看出S5 2007+777在不同波段的射电喷流大致具有相同的方向，方位角在−90°–−100°之间，同时与文献中的arcsec尺度喷流方位角（−100°–−110°）有大约10°–20°的差值，这与利用少量EVT档案数据得到的结果是一致的[18]。一般认为这种方位角差是由喷流与我们视线方向的夹角较小造成的，但是该源的方位角差比一些极端活跃的Blazar天体小很多[21]，这也说明该源存在多普勒增亮效应，但多普勒因子可能不是特别大。
3.2 喷流的亮温度

利用EVN和VLBA高分辨率图像的模型拟合参数以及(1)式(参考文献[22]), 可以得到所有历元的射电亮温度 T_b (见表3、表4).

$$T_b \approx 1.77 \times 10^{12} S_\nu \nu^{-2} \theta_d^{-2}(1 + z).$$ \hspace{1cm} (1)

(1)式中 S_ν 为成分流量密度. 同时我们给出了亮温度的统计分布, 如图6所示, 从图6中可以看出亮温度 T_b 大约在 $10^{10.7} - 10^{12.3}$ K之间, 其平均值和中值都为 $10^{11.4}$ K. 若取 $10^{11.4}$ K作为该源的亮温度, 假设本征亮温度 T'_b 为 5×10^{10} K (见参考文献[23]), 并且利用公式 $T'_b = T_b / \delta$ (式中 $T'_b = 5 \times 10^{10}$ K, δ 为多普勒因子), 可以计算出该源的多普勒因子大约为5.0, 这与上文通过喷流方位角差预期的多普勒因子是一致的, 小于X射线波段多普勒因子13.0[11].

图5 2013年S5 2007+777的15.0 GHz VLBA图像

Fig. 5 The 15.0 GHz VLBA image of S5 2007+777 in 2013

![Diagram](image)

图6 由EVN以及VLBA数据得到的核区亮温度的数量分布图

Fig. 6 The quantitative distribution of brightness temperature of the core obtained from both EVN data and VLBA data

20-12
3.3 喷流成分的自行

在图7中，通过拟合喷流模型成分C1，得出该成分相对核心的速度为(-0.015 ± 0.035) mas/year (-0.385c ± 0.909c); 同时我们也拟合了模型成分C2，得到其速度为(-0.024 ± 0.021) mas/year (-0.630c ± 0.543c)，其中c为光速。在图8中，由于不同历元的成分数量不同，按照距离核区的远近划分为3个成分，拟合得到各模型成分的速度分别为(0.004 ± 0.002) mas/year (0.094c ± 0.061c)、(0.021 ± 0.007) mas/year (0.553c ± 0.169c)和(0.004 ± 0.027) mas/year (0.102c ± 0.701c)。由此可见，S5 2007+777的各模型成分没有明显的自行。

![Fig. 7 Radial position of model components vs. time for S5 2007+777 at 5 GHz](image)

在图7中，可以估算出在2003–2007年 (仅用到3个EVN数据)时间段，喷流模型成分C1 (如图1所示)相对核区的速度为0.083 mas/year (2.16c)，模型成分C2 (如图1所示)的速度为0.016 mas/year (0.43c); 2014–2016年 (仅用到2个EVN数据)时间段，模型成分C1的速度变成了0.041 mas/year (1.07c)，模型成分C2的速度变成了0.805 mas/year (20.86c)。在图8中，如果仅取少量历元，也可得到在某个阶段存在自行 (如1996–2000年左右最外区的成分等)。仅利用少量数据就判断模型成分是否存在自行并不是很准确，通过拟合大量数据来看，该源模型成分没有明显的自行，而对于少量历元间存在自行以及在一些参考文献中发现了该源的自行，此种情况可以用文献[15]中给出的结果来解释：有些模型成分似乎存在自行，但是可能不是其实际运动，而是由于某个大的、低表面亮度成分亮度中心的转移造成的。

4 讨论

较接近的. 通过查找文献, 得到该天体的黑洞质量大约为 \(10^{8.8} M_\odot\) [25–26], 这与文献[26]中用同样方法得到射电类星体的黑洞质量 \(\log(M_{BH}/M_\odot) \approx 8.4–9.6\) 也比较接近. 另外, 在斯隆数字化巡天(Sloan Digital Sky Survey, SDSS)等光谱数据库中, 发现该天体仅有光学测光观测而没有谱线观测, 而文献中该源也没有宽发射线观测结果 [26], 仅利用OII和OIII等窄线估算出宽线区的光度 \(\log(L_{BLR}/(\text{erg} \cdot \text{s}^{-1})) = 43.48\) [25]. 该值处于射电噪类星体的宽线区光度的分布范围之内 [27], 其中 \(L_{BLR}\) 是吸积盘热光度的一个重要参量并且 \(L_{bol} \approx 10L_{BLR}\) [27]. 在本文中, 其中一个重要目的就是尝试在射电波段对该源的多普勒因子进行一定的研究, 进而更加全面地了解该源的喷流尺度和喷流性质.

![图8 S5 2007+777在15 GHz的模型成分的径向位置随时间的变化](image)

Fig.8 Radial position of model components vs. time for S5 2007+777 at 15 GHz

图9给出了该源的光变数据, 由图可知该源是存在剧烈光变的, VLBI的流量变化与单天线欧文斯谷射电天文台(Owens Valley Radio Observatory, OVRO)的流量变化有相同趋势, 通过证实和拟合光变中的耀发可以计算出多普勒因子. 文献中利用该源的射电光变数据已经多次计算了射电光变多普勒因子, Fan等 [29–30] 利用美国密歇根大学射电天文台(The University of Michigan Radio Astronomy Observatory, UMRAO)的光变数据计算出此源的光变多普勒因子为4.68, 还有相关文献中计算得到的光变多普勒因子为7.5 [31]、5.13 [32]. 利用图9中的射电光变和文献[31]中的公式来估算光变多普勒因子, 该公式为:

\[T_{b, var} = 1.548 \times 10^{-32} \Delta S_{\text{max}} d_{L, 2}^2 \nu^{-2} \tau^{-2} (1 + z)^{-1}, \]

\[D_{\text{var}} = (T_{b, var}/T_B)^{1/3}, \]
式中: $T_{\text{b, var}}$ 为可变亮温度; D_{var} 为多普勒增亮因子, 无量纲; d_L 是光度距离, 单位为 m; ΔS_{max} 和 τ 分别为光变期间流量密度的变化与光变时标, 单位分别分别为 Jy 和 d。计算了图9中几个大耀发的多普勒因子(ΔS_{max} 和 τ 分别取耀发流量差与相应光变时标), 发现光变多普勒因子都小于 Sambruna 等 [11] 计算得到的 X 射线波段的多普勒因子为 13.0, 然而我们的结果与文献中其他学者计算得到的多普勒因子是吻合的。同样利用 OVRO 的观测数据, Liodakis 等 [33] 通过射电光变并利用模型拟合与证认, 给出了该源的亮温度为 10^{11} K, 多普勒因子为 1.27。此外, 利用 Giovannini 等 [34] 发现的射电星系的 408 MHz 射电光度和 5 GHz 核区射电光度之间的经验关系, 我们估算了该源的多普勒因子 δ 为 7.7 [28]。

图 9 S5 2007+777 的多波段观测数据的总流量随时间的变化

Fig. 9 Total flux of 2007+777 vs. time at multiband

同步辐射+逆康普顿模型对该源的核区能谱分布(Spectral Energy Distribution, SED)进行了拟合，虽然没有给出确切的多普勒因子参数，但是通过对这个源的SED进行了模型拟合，发现喷流内区的多普勒因子比射电和X射线多普勒因子大许多，这说明该源的喷流可能存在减速现象。

5 总结

在本文中，通过使用EVN和VLBA档案数据，研究了S5 2007+777的射电结构、亮度和自行等性质，得出以下结论：(1)该源的不同频率射电喷流的方向相似，VLBI喷流的方向与kpc尺度的喷流方向有一定的偏差，但相对于一些极端Blazar天体，该偏差比较小；(2) 5 GHz的EVN数据模型合成成分比VLBA 15 GHz模型合成成分数量少，说明喷流成分不是非常致密，在高分辨率情况下一个成分会分解成多个成分，这也说明该源喷流的多普勒增亮效应可能不如极端的Blazar天体；(3)由多历元VLBI观测数据，得到该源的多普勒因子的平均值为5.0，这与用其他方法得到的射电多普勒因子的大小相当，都小于由IC/CMB模型得到的X射线多普勒因子；(4)该源在长时间跨度上，各模型合成成分都没有明显的自行，但是在短时间跨度上，部分历元之间则存在自行，这种现象可能是因为喷流成分的实际运动，而是在某个大的、低表面亮度成分中发生了亮度中心的转移；(5)该源在射电波段的多普勒增亮效应可能会小于X射线波段，这可能是由喷流的减速运动造成的。由该源的射电多普勒因子可得到其本征喷流尺度可达0.5 Mpc，即便达不到巨射电星系喷流的尺度，该源的喷流尺度仍然很大。

参考文献

[6] Cutini S. ATel, 2016, 8635: 1

20-16
The Radio Properties for BL Lac Object
S5 2007+777

LI Zhen-xu¹ WU Zhong-zu¹ CHEN Yong-jun² CHEN Liang² GU Min-feng² MI Li-gong³

¹(1 College of Physics, Guizhou University, Guiyang 550025)
²(2 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030)
³(3 School of Physics and Electronics, Qiannan Normal University for Nationalities, Duyun 558000)

ABSTRACT The object S5 2007+777 is a classic radio-selected BL Lac object with a kpc-scale extended X-ray jet. The Doppler factor derived from the X-ray emission in literatures is around 13.0, then the intrinsic jet scale will be around 1 Mpc. In this work, we present the jet structure, brightness temperature, proper motion, and other radio properties of this source by collecting the EVN (European VLBI Network) data and VLBA (Very Long Baseline Array) 15 GHz survey archival data. We found that all the EVN and VLBA images show a core-jet structure, and the jet direction is similar in all the VLBI images, but slightly different from the kpc-scale jet. The Doppler factor constrained from the brightness temperature of radio core is around 5.0, smaller than the value estimated from X-ray emission, however consistent with those derived with other methods at radio band. After considering all the VLBI data, we found that there is no a significant proper motion in the source. These results indicate that the Doppler factor of this source may not be very high. However, even with the estimated Doppler factor of 5.0, the jet linear size may still be large, around 0.5 Mpc. This implies that this source probably possesses a very large intrinsic jet, similar to the giant radio galaxies.

Key words BL Lacertae objects: individual: S5 2007+777, galaxies: jets, X-rays: galaxies