基于ResNet的旋涡星系旋臂数量识别效果分析
作者:
作者单位:

华南师范大学计算机学院 广州 510631

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61075033)资助


Analysis of the Recognition Effect on the Number of Spiral Arms in Spiral Galaxy Images Using ResNet
Author:
Affiliation:

School of Computer Science, South China Normal University, Guangzhou 510631

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    旋涡星系图像中所蕴含的旋臂信息, 尤其是旋臂数量, 对研究星系结构演化和星系动力学具有重要价值. 在当前星系观测数据爆发式增长的背景下, 如何快速识别出旋臂数量成为旋涡星系研究的重要问题. 基于Galaxy Zoo DECaLS (Dark Energy Camera Legacy Survey)数据集, 研究ResNet (Residual Networks)模型从旋涡星系图像中识别旋臂数量的方法, 通过对比分析ResNet在不同网络层数下的实验结果, 得出具有32层网络结构的ResNet模型, 即ResNet32效果最佳, 其总体准确率为83%, 识别效果优于ViT (Vision Transformer)、EfficientNet和DenseNet等网络模型. 在对不同旋臂数量的识别方面, 识别准确率与训练样本的多少有较强的关系, 拥有2个旋臂的图像数量有6800张, 其F1分数(F1-Score)值达到0.9, 而有4个旋臂的图像数量只有237张, 其F1-Score值也最低. 实验进一步分析了融合传统星系图像特征的识别效果, 发现融合传统星系图像特征在提升旋臂数量识别方面作用有限.

    Abstract:

    The spiral arm information contained in spiral galaxy images, especially the number of spiral arms, is of great value for studying the structural evolution and dynamics of galaxies. Against the backdrop of explosive growth in galaxy observation data, how to quickly identify the number of spiral arms has become an important issue in the study of spiral galaxies. The research is based on the Galaxy Zoo DECaLS (Dark Energy Camera Legacy Survey) dataset and studies the ResNet (Residual Networks) model's method of identifying the number of spiral arms from spiral galaxy images. The experimental results show that the accuracy of the ResNet32 model is 83%, which is the best compared to network models such as ViT (Vision Transformer), EfficientNet, and DenseNet. In terms of recognition of different numbers of spiral arms, there is a strong relationship between recognition accuracy and the number of training samples. There are 6800 images with 2 spiral arms, with an F1-Score value of 0.9, while there are only 237 images with 4 spiral arms, with the lowest F1-Score value. The experiment further analyzed the recognition effect of fused traditional galaxy image features and found that the role of fused traditional galaxy image features in improving the recognition of spiral arms is limited.

    参考文献
    相似文献
    引证文献
引用本文

董舒瑜,张金区.基于ResNet的旋涡星系旋臂数量识别效果分析[J].天文学报,2025,66(2):18. DONG Shu-yu, ZHANG Jin-qu. Analysis of the Recognition Effect on the Number of Spiral Arms in Spiral Galaxy Images Using ResNet[J]. Acta Astronomica Sinica,2025,66(2):18.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期: