2.5 m口径反射镜宽光谱高反射率反射膜的研究
作者:
作者单位:

1. 中国科学院南京天文光学技术研究所 南京 210042;2. 中国科学院天文光学技术重点实验室(南京天文光学技术研究所) 南京 210042;3. 中国科学院大学 北京 100049;4. 南京信息工程大学物理与光电工程学院光学工程系 南京 210044

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(11627804)资助


Study on the Wide Spectral and High Reflectivity Coating of 2.5 m Mirror
Author:
Affiliation:

1. Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042;2. CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042;3. University of Chinese Academy of Sciences, Beijing 100049;4. Department of Optical Engineering, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044;

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高天文望远镜的观测能力, 望远镜主镜口径不断增大, 同时对其膜层要求也更为严格, 要求反射波段更宽且反射率更高. 基于国内天文望远镜的需求, 研究了一种基于离子束辅助沉积技术的大口径镜面宽光谱高反射膜镀制技术. 通过分析3.2 m镀膜设备的几何配置和离子源线性能量分布区域, 采用了双离子源分区独立控制的方法, 在2.5 m口径非球面镜面范围内获得光学常数一致性较好的膜层. 从2.5 m主镜镀膜前的实际面形出发, 通过模拟确定了镀膜时的镜面高度, 并计算了修正板的形状和尺寸, 确保膜层的均匀性优于1.2%. 设计膜系后, 在模拟基片上不同位置放置测试片进行实际镀制, 经过测试, 每个测试片都达到了设计目标. 根据实验结果, 采用离子束辅助沉积的技术, 应用3.2 m镀膜设备, 最终完成2.5 m主镜的宽光谱高反射率反射膜镀制.

    Abstract:

    In order to improve the observation capabilities of astronomical telescopes, the aperture of the telescope's primary mirror is continuously increasing, while the requirements for its coating are becoming more stringent, necessitating a wider reflection bandwidth and higher reflectivity. Based on the domestic demand for astronomical telescopes, this article investigates a wide-spectrum high-reflection coating deposition technique for large-aperture mirrors using ion beam-assisted deposition technology. By analyzing the geometric configuration of the 3.2-meter coating equipment and the linear energy distribution area of the ion source, a dual-ion source partitioning and independent control method is adopted to achieve a coating layer with good consistency in optical constants within the range of a 2.5 m aperture spherical mirror. Starting from the actual shape of the 2.5 m primary mirror before coating, the height of the mirror surface when depositing the films is determined through simulation, and the shape and size of the correction plate are calculated to ensure that the uniformity of the coating layer is better than 1.2%. After designing the coating system, test pieces are placed at different positions in the simulated substrate for actual deposition. After testing, each test piece meets the design objectives. Based on the experimental results, the wide-spectrum high-reflectance coating of the 2.5 m primary mirror is finally completed using the 3.2-meter coating equipment and the ion beam-assisted deposition technology.

    参考文献
    相似文献
    引证文献
引用本文

田杰,李新南,王晋峰,王俊,宗卫杰,谢多,路金豪,黄亚.2.5 m口径反射镜宽光谱高反射率反射膜的研究[J].天文学报,2025,66(2):16. TIAN Jie, LI Xin-nan, WANG Jin-feng, WANG Jun, ZONG Wei-jie, XIE Duo, LU Jin-hao, HUANG Ya. Study on the Wide Spectral and High Reflectivity Coating of 2.5 m Mirror[J]. Acta Astronomica Sinica,2025,66(2):16.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期: