基于FPN-ViT的星系形态分类研究
作者:
作者单位:

1. 云南民族大学数学与计算机科学学院 昆明 650504;2. 中国科学院天体结构与演化重点实验室 昆明 650011

作者简介:

通讯作者:

中图分类号:

P152;

基金项目:

国家自然科学基金项目(61561053)、云南省教育厅科学研究基金项目(2023J0624)资助


Classification of Galaxy Morphology Based on FPN-ViT Model
Author:
Affiliation:

1. School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504;2. Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011;

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着人工智能技术的发展, 利用深度学习方法进行星系形态分类研究取得了较大进展, 但在分类精度、自动化及其星系的空间特征表示上仍然存在不足之处. Vision Transformer (ViT)模型目前在星系形态分类上具有较好的鲁棒性, 但是在处理多尺度图像时存在一定的局限性, 因此提出将特征金字塔(Feature Pyramid Networks, FPN)引入ViT模型(FPN-ViT)中进行星系形态的分类研究中. 结果表明: 基于FPN-ViT模型进行星系形态分类的平均准确率、精确率、召回率以及F1分数等各项评估指标均在95%以上, 与传统的ViT模型相比各项指标均有一定程度的提升. 同时, 在原始星系图像中加入不同程度的高斯噪声和椒盐噪声, 验证FPN-ViT模型对低信噪比数据也能获得较好的分类性能. 此外, 为了对模型进行综合评估, 采用t分布随机邻接嵌入(t-distributed Stohastic Neighbor Embedding, t-SNE)算法对分类结果进行了可视化分析, 能够更加直接地看出FPN-ViT模型对于星系形态分类的效果. 因此, 将FPN网络应用于ViT模型对星系形态的分类研究中是一种全新尝试, 对后续研究具有重要意义.

    Abstract:

    With the development of artificial intelligence technology, the research of galaxy morphology classification using deep learning methods has made great progress, but there are still shortcomings in classification accuracy, automation and spatial characteristics representation of galaxies. The Vision Transformer model has good robustness in galaxy morphology classification, but has limitations in handling multi-scale images. In this paper, we propose to introduce the Feature Pyramid Networks (FPN) into the Vision Transformer (ViT) model to classify galaxies. The results show that the average accuracy, precision, recall, and F1-score of the FPN-ViT model are above 95%, and the indexes are improved compared with the traditional ViT model. Meanwhile, we add different levels of Gaussian noise and pretzel noise to the original galaxy images to verify that the FPN-ViT model can obtain better classification performance for low signal-to-noise ratio data. In addition, to evaluate the model comprehensively, the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm is used to visualize and analyze the classification results, which can show the effect of FPN-ViT model on galaxy morphology classification more directly. The application of FPN network to the classification of galaxy morphology by ViT model is a new attempt, which is of great importance for the subsequent research.

    参考文献
    相似文献
    引证文献
引用本文

曹婕,许婷婷,邓雨禾,李广平,高献军,杨明存,刘执靖,周卫红.基于FPN-ViT的星系形态分类研究[J].天文学报,2024,65(3):32. CAO Jie, XU Ting-ting, DENG Yu-he, LI Guang-ping, GAO Xian-jun, YANG Ming-cun, LIU Zhi-jing, ZHOU Wei-hong. Classification of Galaxy Morphology Based on FPN-ViT Model[J]. Acta Astronomica Sinica,2024,65(3):32.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-31
  • 出版日期: